Real polynomial diffeomorphisms with maximal entropy: II. Small Jacobian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Polynomial Diffeomorphisms with Maximal Entropy: Tangencies

The problem of understanding the dynamical behavior of diffeomorphisms has played a central role in the field of dynamical systems. One way of approaching this question is to ask about generic behavior in the space of diffeomorphisms. Another way to approach it is to ask about behavior in some specific parametrized family. The family of diffeomorphisms of R introduced by Hénon has often played ...

متن کامل

C Surface Diffeomorphisms with No Maximal Entropy Measure

For any 1 ≤ r <∞, we build on the disk and therefore on any manifold, a C-diffeomorphism with no measure of maximal entropy. Résumé. Pour tout 1 ≤ r < ∞, nous construisons, sur le disque et donc sur toute variété, un difféomorphisme de classe C sans mesure d’entropie maximale.

متن کامل

POLYNOMIAL DIFFEOMORPHISMS OF d . II : STABLE MANIFOLDS AND RECURRENCE

Friedland and Milnor [FM] have shown that from a dynamical point of view the polynomial diffeomorphisms of C2 fall naturally into two classes. The first class consists of diffeomorphisms with simple dynamics. The diffeomorphisms in this class have periodic points of at most finitely many periods and topological entropy zero. The second class contains the well-known Henon map f(x, y) = (y, i-ax ...

متن کامل

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

OWA operators with maximal entropy

One important issue in the theory of Ordered Weighted Averaging (OWA) operators is the determination of the associated weights. One of the first approaches, suggested by O’Hagan, determines a special class of OWA operators having maximal Shannon entropy of the OWA weights for a given level of orness; algorithmically it is based on the solution of a constrained optimization problem. In this pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2006

ISSN: 0143-3857,1469-4417

DOI: 10.1017/s0143385706000095